GPU-Optimized Coarse-Grained MD Simulations of Protein and RNA Folding and Assembly
نویسندگان
چکیده
Molecular dynamics (MD) simulations provide a molecular-resolution physical description of the folding and assembly processes, but the size and the timescales of simulations are limited because the underlying algorithm is computationally demanding. We recently introduced a parallel neighbor list algorithm that was specifically optimized for MD simulations on GPUs. In our present study, we analyze the performance of the algorithm in our MD simulation software, and we observe that the major of the overall execution time is spent performing the force calculations and the evaluation of the neighbor list and pair lists. The overall speedup of the GPU-optimized MD simulations as compared to the CPU-optimized version is N-dependent and ∼30x for the full 70s ribosome (10,219 beads). The pair and neighbor list evaluations have performance speedups of ∼25x and ∼55x, respectively. We then make direct comparisons with the performance of our MD simulation code with that of the SOP model implemented in the simulation code of HOOMD, a leading general particle dynamics simulation package that is specifically optimized for GPUs.
منابع مشابه
A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.
Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the d...
متن کاملCapturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), b...
متن کاملCoarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications
Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the us...
متن کاملSequence-dependent base-stacking stabilities guide tRNA folding energy landscapes.
The folding of bacterial tRNAs with disparate sequences has been observed to proceed in distinct folding mechanisms despite their structural similarity. To explore the folding landscapes of tRNA, we performed ion concentration-dependent coarse-grained TIS model MD simulations of several E. coli tRNAs to compare their thermodynamic melting profiles to the classical absorbance spectra of Crothers...
متن کاملSimulation of Coarse-Grained Protein-Protein Interactions with Graphics Processing Units.
We report a hybrid parallel central and graphics processing units (CPU-GPU) implementation of a coarse-grained model for replica exchange Monte Carlo (REMC) simulations of protein assemblies. We describe the design, optimization, validation, and benchmarking of our algorithms, particularly the parallelization strategy, which is specific to the requirements of GPU hardware. Performance evaluatio...
متن کامل